首页> 外文OA文献 >Resource Allocation for Space Division Multiplexing:Optical White Box vs. Optical Black Box Networking
【2h】

Resource Allocation for Space Division Multiplexing:Optical White Box vs. Optical Black Box Networking

机译:空分复用的资源分配:光学白盒与光学黑盒网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Elastic optical networking (EON) with space division multiplexing (SDM) is the only evident long-term solution to the capacity needs of the future networks. The introduction of space via spatial fibers, such as multi-core fibers (MCF) to EON provides an additional dimension as well as challenges to the networkplanning and resource optimization problem. There are various types of technologies for SDM transmission medium, switching, and amplification; each of them induces different capabilities and constraints on the network. For example, employing MCF as the transmission medium for SDM mitigates the spectrum continuity constraint of the routing and spectrum allocation (RSA) problem for EON. In fact, cores can be switched freely on different linksduring routing of the network traffic. On the other hand, intercore crosstalk should be taken into account while solving the resource allocation problem. In the framework of switching for elastic SDM network, the programmable architecture on demand (AoD) node (optical white box) can provide a more scalable solution with respect to the hard-wired reconfigurable opticaladd/drop multiplexers (ROADMs) (optical black box). This study looks into the routing, modulation, spectrum and core allocation (RMSCA) problem for weakly-coupled MCF based elastic SDM networks implemented through AoDs and static ROADMs. The proposed RMSCA strategies integrate the spectrum resourceallocation, switching resource deployment, and physical layer impairment in terms of inter-core crosstalk through a multiobjective cost function. The presented strategies perform a crosslayer optimization between the network and physical layers to compute the actual inter-core crosstalk for the candidate resource solutions and are specifically tailored to fit the type of optical node deployed in the network. The aim of all these strategies is to jointly optimize the switching and spectrum resource efficiency when provisioning demands with diverse capacity requirements. Extensive simulation results demonstrate that 1) by exploiting the dense intra-nodal connectivity of the ROADM-based SDMnetwork, resource efficiency and provisioned traffic volume improve significantly related to AoD-based solution, 2) the inter-core crosstalk aware strategies improve substantially the provisioned traffic volume for AoD-based SDM network, and 3) the switching modules grows very gently for the network designed with AoD nodes related to the one with ROADMs as the traffic increases, qualifying AoD as a scalable and cost-efficient choice for futureSDM networks.
机译:具有空分复用(SDM)的弹性光网络(EON)是满足未来网络容量需求的唯一明显的长期解决方案。通过空间光纤(例如多芯光纤(MCF))将空间引入EON不仅带来了新的维度,而且给网络规划和资源优化问题带来了挑战。 SDM传输介质,交换和放大的技术有很多种。它们中的每一个都会对网络产生不同的功能和约束。例如,将MCF用作SDM的传输介质可以缓解EON的路由和频谱分配(RSA)问题的频谱连续性约束。实际上,可以在路由网络流量时在不同的链路上自由切换核心。另一方面,在解决资源分配问题时应考虑内核间的串扰。在弹性SDM网络的交换框架中,按需可编程体系结构(AoD)节点(光学白盒)可以提供相对于硬连线可重新配置的光学分插复用器(ROADM)(光学黑盒)而言更具可扩展性的解决方案。 。这项研究研究了通过AoD和静态ROADM实现的基于弱耦合MCF的弹性SDM网络的路由,调制,频谱和核心分配(RMSCA)问题。提出的RMSCA策略通过多目标成本函数,在核心间串扰方面整合了频谱资源分配,交换资源部署和物理层损害。提出的策略在网络和物理层之间执行跨层优化,以计算候选资源解决方案的实际核心间串扰,并经过专门调整以适合网络中部署的光学节点的类型。所有这些策略的目的是在提供具有不同容量要求的需求时共同优化交换和频谱资源效率。大量的仿真结果表明:1)通过利用基于ROADM的SDM网络的密集节点内连通性,与基于AoD的解决方案相关的资源效率和预配置流量显着提高; 2)核心间串扰感知策略显着改善了预配置基于AoD的SDM网络的业务量,以及3)随着流量的增加,针对设计有与ROADM的AoD节点相关的AoD节点的网络,交换模块的增长非常缓慢,使AoD成为FutureSDM网络的可扩展且具有成本效益的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号